
from heating, the changes of temperature during the outflow process are negligible. The con- 
tact surface near the open end shows that during the suction process the external medium 

reaches the depth ~0,38 of the length of the cylinder. The distribution of pressure was 
used to determine the dependence of pressure on time, which is shown in Fig. 2. 

NOTATION 

x is the coordinate along the axis of the cylinder; t, time; u, velocity; p, pressure; 
p, density; k, exponent of the adiabatic cnrve; X, wetted perimeter of the cylinder; F, 
cross-sectional area of the cylinder; To, force of friction of the liquid against the cylin- 
der walls per unit area; 4, friction coefficient; rh, hydraulic radius of the cylinder; ~, 
coefficient of dynamical viscosity; Re, Reynolds number; and a, speed of sound. The sub- 
script 0 refers to the conditions of the external medium, and 1 to the perturbed conditions. 
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HEAT TRANSFER BETWEEN THREE MEDIA IN TRIPLE COUNTERCURRENT 

PIPE FLOW 

E. E. Shpil~rain and K. A. Yakimovich UDC 536.27 

A method is discussed for calculating the thermodynamic characteristics asso- 
ciated with the interaction of three fluid flows in pipes. Analytical rela- 
tions are derived for the case of triple concentric countercurrent flow. 

The calculation of heat transfer between two media flowing in the same or opposite di- 
rections does not present any difficulties. Recently, however, there has been a growing num- 
ber of problems in which it is required to calculate heat transfer in the simultaneous inter- 
action of three flows, but the literature does not offer analytical solutions for determining 
the temperature profile along the flow axis, the quantity of heat transmitted across the sep- 
arating surface, and other characteristics. The number of combinations along the relative 
direction of motion of the media and in the direction of heat transfer can be enormous in 
this case. The most complicated situation in this class of problems is triple concentric 
countercurrent flow of the media. 

In particular, e.g., the recent efforts aimed at intensifying petroleum recovery have 
created the important problem of supplying heat to oil-bearing strata at great depths~ One 
of the more promising methods of solving this problem is to create a deep underground steam 
generator of adequate output, situated in the downhole zone, with injection of the generated 
steam into the oil stratum. The specific attributes of this problem are that, first, it is 
required to lower the steam generator through a drivepipe with a diameter of 150-200 mm and, 
second, to supply the steam generator with air, fuel, and water and to exhaust the combustion 
products to the surface of the earth. At the same time, it is necessary to maintain the 
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Fig. i. Axial temperature distribu- 
tion in the concentric countercurrent 
thermal interaction of three flows 
(water and air input temperatures at 
7 = 1500 m; tl = t3 = 100~ input 
temperature of combustion products at 

= 0; t2 = 400~ 

outer wall of the pipe system at a minimum temperature so as not to heat up the underground 
co lumn. 

We have developed a procedure for calculating the heat transfer associated with the an- 
nular concentric countercurrent flow of three media. The problem is investigated in the 
specific example of the system of pipes for a downhold steam generator, but the approach to 
the solution of the problem and the resulting conclusions and relations, of course, are of 
a general nature. 

Let there be given a system of three coaxial pipes. Water and air flow, respectively, 
in the inner pipe and the annular duct formed by the middle and outer pipes. Flowing in the 
opposite direction along the annular duct formed by the inner and middle pipes are the combus- 
tion products. The heat of the combustion products is transmitted to the water and air. We 
neglect the thermal resistances of the walls separating the flows, and the heat transfer from 
the outer pipe into the surrounding medium. Radial temperature gradients are not present in 
the ducts. 

Basic Heat-Transfer Equations. The quantity of heat acquired by the water in a section 
of pipe of length d~ from the combustion products (see Fig. i) is 

dQ1 = K ~ D I  (t~ - -  t l )dl .  (1 )  

The quantity of heat acquired by the air is 

d@_ -- K2aD,, (t2 - -  ta) dl. ( 2 ) 

The quantity of heat removed in heat transfer from the combustion products to the air and wa- 

ter in the section d~ is 

dq = - -  (rig + dG). (3)  

On the other hand (for motion along the I axis; see Fig. i), 

dQ = c'~G~dt.2, (4 )  

dQ1 = - -  clOldll, (5 )  

dO~ -~ - -  CaGad/a �9 ( 6 )  

Method  o f  S o l u t i o n .  From E q s .  ( 1 ) - ( 6 )  i t  f o l l o w s  t h a t  

dt I KIaD,  (*e - -  tl) dl, ( 7 )  
clOl 

dt2 KlaD1 ( t 2 - - t l ) d l  K2aD~_ ( t2 - - ta )  dt, (8 )  
c2G2 c2G~ 

dta K2nD,2 ( t 2 - -  l~)dl. (9 )  
csGa 

We i n t r o d u c e  t h e  v a r i a b l e s  y = t=  --  t l  and  x = t 2  --  t a  and  d e d u c e  t h e  f o l l o w i n g  r e l a t i o n s  
f rom E q s .  ( 7 ) - ( 9 ) :  
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dg 

dl 
-- Bx--(A--D)y, 

dx 

d[ 
- (B - -  C )  x - - & , .  

(io) 

(ll) 

Here 

We seek a solution of 

It must satisfy the differential 

On the basis of 

These relations 

fled only under 

A -  KlaD1 " B - -  KiaD2 ; D =  K,~D~ ; C K~aD., 
ciOz co.G2 c,.G1 caOa 

the system of differential equations (i0), (ll) 

!r = AI exp (~d) q- BI exp (~d), 

x = A~ exp (~ I )  -~- B~_ exp (~3e!), 

equations themselves as well as 

expressions (1.2) and (13), Eqs. (i0) and (ii) acquire 

Al% exp ((Zll) @ Bi~ 1 exp (~i)  = -- At (A -- D) exp (%0 -- 

-- B I (A -- D) exp (~II) -- AiB exp (~J) -- BBe exp (~J), 

A2% exp (%l) q- Bd32 exp ({~,_J) = ~- AAI exp (%i) - -  

- -  AN, exp (~J) - -  (B - -  C) A2 exp (%l) - -  B~, (B - -  C) exp ([5~l). 

represent identities, which are valid for any values of ~. 

the condition that 

A~ (~ -~. A -- D) q- A.iB = O, 

From Eqs. (17)-(20) we deduce 

in ~ and ~: 

The roots of these 

whence we infer that 

G (~ + A --  D) + a &  

A A i  i- A,, (~z + B - -  C) 

AB, 4-. B 2 (~ L~_ .t:3o - -  C) 

two identity 

=0, 

~0, 

==0. 

rel at ions, which 

in the form 

equations are 

,:; 7- A D B 

A o:+ B - - C  

B.+ A - - D  B 

a pq-B--c 

- - b  • 1/-/5o r - -  46 
o:(B) = 2 

- - b  %- |7~2 __ 4d 
2 

--b - -  ]#}z _ _  4d 

(12)  

(13 

the boundary conditions. 

tile form 

(14 

They can be 

quadratic yield 

(15 

satis- 

(16) 

(17) 

(18) 

(19)  

(20) 

equations 

(21) 

(22)  

(23) 

(24 

(25 

here b = A -- D + B -- C and d = DC -- AC -- DB. 

The foregoing arguments are valid under the condition b a > 4d. 

From (17), (19) and, respectively, (18), (20) we have 

A2 = A ~ - - ,  (26 
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We now integrate Eqs. 

B~ = B1 D - -  
C--~ 

(7)-(9) to obtain 

tl=_ DA1 e x p ( ~ / ) - -  DBi exp(~/)@ co~st, 

A, (D - -  rz) exp (~l) B1 (D - -  ~) exp (131) + const, 

CA~ D --- cz exp (al) CB~ _ _ D  - -  ~ exp (~') § const. 
~. C - - ~ ,  ~ C - - ~  

To evaluate 

total length of 

Then the equations 

quire the form 

the constants of integration, we use the boundary conditions (l K 

the system) 

[ = I~, : tl = [t,,r = h, 13==ta,,~ = [; 

l = 0 :  t 2 = t ~ , 0 = g "  

f o r  t h e  t e m p e r a t u r e s  o f  t he  f l o w s  a l o n g  t h e  l e n g t h  o f  the pipe 

tj = h § DAI~z [exp (al~) -- exp (al)l q- - ~  [exp (~t~) -- exp (~l)1, 

l o = g §  A ~ ( D - - ~ )  [ l _ e x p ( a l ) l q _  B t ( D - - ~ )  [ l _ e x p ( ~ l ) l ,  

t ~ = I +  - -  
CA1 D - -  

~; C - - ~  
- -  [exp (al~) -- exp (~l)] + 

q- CB, D - - ~  [exp(~I~)--exp(~l)] .  
c - ~  

The n e x t  p r o b l e m  i s  to  d e t e r m i n e  t h e  c o e f f i c i e n t s  A1 and B1. 
y = t 2  - -  t ,  and x = t= -- ta  and mak ing  u s e  o f  Eqs .  ( 3 1 ) - ( 3 3 ) ,  ( 1 2 ) ,  
o b t a i n  t he  s y s t e m  o f  e q u a t i o n s  

FX, -~- OYx = h - -  g, 

FX2 + GY,, = [ - -  g, 

in which 

F = A~ exp(al,0 ' G = B1 ; 

(27) 

X1 = (D -- ~) exp (-- alH) -- D; 

Y1 = D -- ~ -- D exp (~l~); 

X ~  = ( D  - -  a) exp ( - -  cd~)  - -  C D - -  a 
C--c~  

Y2 = D -- ~ -- C D --___~ exp (~l~). 
C--~ 

(28) 

(29) 

(30) 

is the 

system ac- 

(31) 

(32) 

(33) 

Comparing the quantities 
(13), and (26), (27), we 

(34) 

(35) 

Solving the system (34), (35) for F and G, we find the coefficients AI and BI. 

The equations for the temperature distribution along the length for triple countercur- 

rent flow can be written in the final form 

~1 = h @ DF { i - -  exp [~ (I -- /~)]} q- DG [exp ( ~ l ~ ) -  exp (~/)1, (36)  
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TABLE I. Longitudinal Flow-Temperature Distribution (~ for 
Various Boundary Conditions 

L1TI 0 1 2 0  50 1 0 0 1 5 0 0 1 1 0 0 0 1 1 4 0 0  14501480 1500 

{1 
tz 

I1 

t2 
;3 

135 ! 103 
400 155 
233 122 

i~1 I lo8 
600 195 
323 140 

139 [ 108 
~00 i !59 
235 127 

170 i18 
600 203 
328 ~49 

!87 152 
500 202 
305 171 

96 
97 
96 

96 
I04 
99 

!01 
105 
102 

106 
114 
109 

!46 
149 
147 

h=lO0, g=400, /=50 

95 95 I 95 [ 
95 95 95 
95 95 95 

h=100, g=600, f--50 

~5 95 95 
95 95 

h=-IO0, g=400, f=lO0 

I0O IOO ~ lOO I 
!oo 10o / IOO 1 1O0 i00 ] lO0 

h=100, g=600, [~150 

105 I 105 ] 105 
105 105 105 
105 105 105 i 

h=!50, g--500, /=100 

146 146 146 
146 146 146 

~ 95 
94 

95 91 

95 95 
95 95 
95 91 

100 100 
I00. 100 
100 100 

i05 
105 109 

!46 146 
t45 144 
145 142 

97 
~9 
77 

97 
,<.9 
77 

I00 
100 
100 

103 
i i !  
123 

129 

tO0 
8I 
50 

i00 
81 
50 

I 0o 
10O 
lO0 

!00 
119 
t50 

150 
131 
100 

t2 = g -~ (D - -  ~) F {exp ( - -  ~.l,~) - -  

- -  exp [ - -  a (1,< - -  1)]} q- G (D - -  ~)[! - -  exp ([~/)], 

D - - o ~  
t3 = f + C F - -  { 1 - -  exp [ - -  ~ ( I .  - -  l ) ] }  -i-- 

C - - a  

+ c6 D- - I~  
C--13 

[ e x p  (B l . )  - -  e x p  ([31)]. 

(37 )  

(38) 

The quantity of heat transmitted to the water is determined by means of Eq. (i): 

[H 

Q1 ~- KinD1 i" (t~ - -  q) dl. 
'o 

(39) 

The heat acquired by the air is determined from Eq. (2): 

02 : K ~ D ~  t" (t~ ~ t3) dl. (4 O) 

As an illustraLion, Table 1 gives the results of calculations of the temperature pro- 
file according to the relations derived above for several different sets of boundary condi- 
tions and certain dimensional, mass-flow, and heat-transfer characteristics: D~ = 0.06 m; 
Da = 0.i0 m; GI = 4000 kg/h; Ga = 3000 kg/h; G3 = 2800 kg/h; c~ = 1.00 kcal/kg~ ca = 0.28 
kcal/kg~ c3 = 0.25 kcal/kg~ KI = 260 kcal/mah~ K2 = 150 kcal/m2h~ 7 K = 1500 m. 

Several conclusions can be drawn from an inspection of the results under the given con- 
ditions. In particular: 

I) The flow temperatures equalize over fairly short intervals at the ends of the pipes 
(~50 m). 

2) The temperature of the air at the entry to the system only comparatively slightly 
affects the temperature level over the entire length of the pipes, while the influence of the 
water temperature is more significant. 

3) The influence of the initial temperature of the combustion products is felt only in 
the entry section (~50 mm). 
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The proposed method can be used to derive analytical relations for calculating the tem- 
perature fields and other characteristics for other possible combinations of relative motion 
of the media and the direction of heat transfer between flows. 

NOTATION 

DI is the median diameter of inner pipe; D2, median diameter of middle pipe; tl, tem- 
perature of water; t2, temperature of combustion products; t3, temperature of air; GI, mass 
flow of water; G2, mass flow of combustion products; G~, mass flow of air; ci, specific heat 
of water; c2, specific heat of combustion products; c3, specific heat of air; kl, coefficient 
of heat transfer from combustion products to water; K2, coefficient of heat transfer from 
combustion products to air; and 7K, length of pipe system. 
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