from heating, the changes of temperature during the outflow process are negligible. The contact surface near the open end shows that during the suction process the external medium reaches the depth 20.38 of the length of the cylinder. The distribution of pressure was used to determine the dependence of pressure on time, which is shown in Fig. 2.

NOTATION

x is the coordinate along the axis of the cylinder; t, time; u, velocity; p, pressure; ρ, density; k, exponent of the adiabatic curve; x, wetted perimeter of the cylinder; F, cross-sectional area of the cylinder; τ_{0}, force of friction of the liquid against the cylinder walls per unit area; λ, friction coefficient; r_{h}, hydraulic radius of the cylinder; μ, coefficient of dynamical viscosity; Re, Reynolds number; and a, speed of sound. The subscript 0 refers to the conditions of the external medium, and 1 to the perturbed conditions.

LITERATURE CITED

1. I. P. Ginzburg, Applied Gas and Hydrodynamics [in Russian], Leningrad State University Press, Leningrad (1958).
2. S. K. Godunov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).
3. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Application to Gas Dynamics [in Russian], Nauka, Moscow (1968).
4. S. K. Godunov and V. S. Ryaben'kii, Difference Schemes [in Russian], Nauka, Moscow (1973).
5. É. T. Bruk-Levinson and E. A. Romashko, in: Physics and Technology of Aerothermooptical Methods of Control and Diagnosis of Laser Radiation [in Russian], ITMO Akad. Nauk. Belo. SSR, Minsk (1981), pp. 76-87.
6. M. J. Levy and J. H. Potter, "Gas flow in a rarefaction tube," Nav. Eng. J., 941-950, December (1964).

HEAT TRANSFER BETWEEN THREE MEDIA IN TRIPLE COUNTERCURRENT
PIPE FLOW
E. É. Shpil'rain and K. A. Yakimovich

UDC 536.27

A method is discussed for calculating the thermodynamic characteristics associated with the interaction of three fluid flows in pipes. Analytical relations are derived for the case of triple concentric countercurrent flow.

The calculation of heat transfer between two media flowing in the same or opposite directions does not present any difficulties. Recently, however, there has been a growing number of problems in which it is required to calculate heat transfer in the simultaneous interaction of three flows, but the literature does not offer analytical solutions for determining the temperature profile along the flow axis, the quantity of heat transmitted across the separating surface, and other characteristics. The number of combinations along the relative direction of motion of the media and in the direction of heat transfer can be enormous in this case. The most complicated situation in this class of problems is triple concentric countercurrent flow of the media.

In particular, e.g., the recent efforts aimed at intensifying petroleum recovery have created the important problem of supplying heat to oil-bearing strata at great depths. One of the more promising methods of solving this problem is to create a deep underground steam generator of adequate output, situated in the downole zone, with injection of the generated steam into the oil stratum. The specific attributes of this problem are that, first, it is required to lower the steam generator through a drivepipe with a diameter of $150-200 \mathrm{~mm}$ and, second, to supply the steam generator with air, fuel, and water and to exhaust the combustion products to the surface of the earth. At the same time, it is necessary to maintain the

Translated from Inzhenerno-Fizicheskii Zhurnal, Vo1. 43, No. 6, pp, 1028-1033, December, 1982.

Fig. 1. Axial temperature distribution in the concentric countercurrent thermal interaction of three flows (water and air input temperatures at $z=1500 \mathrm{~m}$; $\mathrm{t}_{1}=\mathrm{t}_{3}=100^{\circ} \mathrm{C}$; input temperature of combustion products at $\left.Z=0 ; \quad t_{2}=400^{\circ} \mathrm{C}\right)$.
outer wall of the pipe system at a minimum temperature so as not to heat up the underground column.

We have developed a procedure for calculating the heat transfer associated with the annular concentric countercurrent flow of three media. The problem is investigated in the specific example of the system of pipes for a downhold steam generator, but the approach to the solution of the problem and the resulting conclusions and relations, of course, are of a general nature.

Let there be given a system of three coaxial pipes. Water and air flow, respectively, in the inner pipe and the annular duct formed by the middle and outer pipes. Flowing in the opposite direction along the annular duct formed by the inner and middle pipes are the combustion products. The heat of the combustion products is transmitted to the water and air. We neglect the thermal resistances of the walls separating the flows, and the heat transfer from the outer pipe into the surrounding medium. Radial temperature gradients are not present in the ducts.

Basic Heat-Transfer Equations. The quantity of heat acquired by the water in a section of pipe of length dt from the combustion products (see Fig. 1) is

$$
\begin{equation*}
d Q_{1}=K_{1} \pi D_{1}\left(t_{2}-t_{1}\right) d l . \tag{1}
\end{equation*}
$$

The quantity of heat acquired by the air is

$$
\begin{equation*}
d Q_{2}=K_{2} \pi D_{2}\left(t_{2}-t_{3}\right) d l . \tag{2}
\end{equation*}
$$

The quantity of heat removed in heat transfer from the combustion products to the air and water in the section $\mathrm{d} l$ is

$$
\begin{equation*}
d Q=-\left(d Q_{1}+d Q_{2}\right) . \tag{3}
\end{equation*}
$$

On the other hand (for motion along the 2 axis; see Fig. 1),

$$
\begin{gather*}
d Q=c_{2} G_{2} d t_{2}, \tag{4}\\
d Q_{1}=-c_{1} G_{1} d t_{1}, \tag{5}\\
d Q_{2}=-c_{3} G_{3} d t_{3} . \tag{6}
\end{gather*}
$$

Method of Solution. From Eqs. (1)-(6) it follows that

$$
\begin{gather*}
d t_{1}=-\frac{K_{1} \pi D_{1}}{c_{1} G_{1}}\left(t_{2}-t_{1}\right) d l \tag{7}\\
d t_{2}=-\frac{K_{1} \pi D_{1}}{c_{2} G_{2}}\left(t_{2}-t_{1}\right) d l-\frac{K_{2} \pi D_{2}}{c_{2} G_{2}}\left(t_{2}-t_{3}\right) d l \tag{8}\\
d t_{3}=-\frac{K_{2} \pi D_{2}}{c_{3} G_{3}}\left(t_{2}-t_{3}\right) d l \tag{9}
\end{gather*}
$$

We introduce the variables $y=t_{2}-t_{1}$ and $x=t_{2}-t_{3}$ and deduce the following relations from Eqs. (7)-(9):

$$
\begin{align*}
& \frac{d y}{d l}=-B x-(A-D) y, \tag{10}\\
& \frac{d x}{d l}=-(B-C) x-A y . \tag{11}
\end{align*}
$$

Here

$$
A=\frac{K_{1} \pi D_{1}}{c_{2} G_{2}} ; B=\frac{K_{2} \pi D_{2}}{c_{2} G_{2}} ; D=\frac{K_{1} \pi D_{1}}{c_{1} G_{1}} ; C=\frac{K_{2} \pi D_{2}}{c_{3} G_{3}} .
$$

We seek a solution of the system of differential equations (10), (11) in the form

$$
\begin{align*}
& y=A_{1} \exp \left(\alpha_{1} l\right)+B_{1} \exp \left(\beta_{1} l\right), \tag{12}\\
& x=A_{2} \exp \left(\alpha_{2} l\right)+B_{2} \exp \left(\beta_{2} l\right) . \tag{13}
\end{align*}
$$

It must satisfy the differential equations themselves as well as the boundary conditions.
On the basis of expressions (12) and (13), Eqs. (10) and (11) acquire the form

$$
\begin{gather*}
A_{1} \alpha_{1} \exp \left(\alpha_{1} l\right)+B_{3} \beta_{1} \exp \left(\beta_{1} l\right)=-A_{1}(A-D) \exp \left(\alpha_{1} l\right)- \tag{14}\\
-B_{1}(A-D) \exp \left(\beta_{1} l\right)-A_{2} B \exp \left(\alpha_{2} l\right)-B B_{2} \exp \left(\beta_{2} l\right) \\
A_{2} \alpha_{2} \exp \left(\alpha_{2} l\right)+B_{2} \beta_{2} \exp \left(\beta_{2} l\right)=-A A_{1} \exp \left(\alpha_{1} i\right)- \\
-A B_{1} \exp \left(\beta_{1} l\right)-(B-C) A_{2} \exp \left(\alpha_{2} l\right)-B_{2}(B-C) \exp \left(\beta_{2} l\right) . \tag{15}
\end{gather*}
$$

These relations represent identities, which are valid for any values of Z. They can be satisfied only under the condition that

$$
\begin{align*}
& \alpha_{1}=\alpha_{2}=\alpha, \beta_{1}=\beta_{3}=\beta, \tag{16}\\
& A_{1}(\alpha+A-D)+A_{2} B=0, \tag{17}\\
& B_{1}(\beta+A-D)+B B_{2}=0, \tag{18}\\
& A A_{1}+A_{2}(\alpha+B-C)=0, \tag{19}\\
& A B_{1}+B_{2}(\beta+B-C)=0 . \tag{20}
\end{align*}
$$

From Eqs. (17)-(20) we deduce two identity relations, which yield quadratic equations in α and β :

$$
\begin{align*}
& \frac{\alpha-A-D}{A}=\frac{B}{\alpha+B-C}, \tag{21}\\
& \frac{B+A-D}{A}=\frac{B}{\beta+B-C} . \tag{22}
\end{align*}
$$

The roots of these equations are

$$
\begin{equation*}
\alpha(\beta)=\frac{-b \pm \sqrt{b^{2}-4 a}}{2} \tag{23}
\end{equation*}
$$

whence we infer that

$$
\begin{align*}
& \alpha=\frac{-b+\sqrt{b^{2}-4 a}}{2} \tag{24}\\
& \beta=\frac{-b-\sqrt{b^{2}-4 d}}{2} \tag{25}
\end{align*}
$$

here $b=A-D+B-C$ and $d=D C-A C-D B$.
The foregoing arguments are valid under the condition $b^{2}>4 d$.
From (17), (19) and, respectively, (18), (20) we have

$$
\begin{equation*}
A_{2}=A_{1} \frac{D-\alpha}{C-\alpha} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
B_{\underline{2}}=B_{1} \frac{D-\beta}{C-\beta} \tag{27}
\end{equation*}
$$

We now integrate Eqs. (7)-(9) to obtain

$$
\begin{gather*}
t_{1}=-\frac{D A_{1}}{\alpha} \exp (\alpha l)-\frac{D B_{1}}{\beta} \exp (\beta l)+\text { const } \tag{28}\\
t_{2}=-\frac{A_{1}(D-\alpha)}{\alpha} \exp (\alpha l)-\frac{B_{1}(D-\beta)}{\beta} \exp (\beta l)+\text { const, } \tag{29}\\
t_{3}=-\frac{C A_{1}}{\alpha} \frac{D-\alpha}{C-\alpha} \exp (\alpha l)-\frac{C B_{1}}{\beta} \frac{D-\beta}{C-\beta} \exp (\beta i)+\text { const. } \tag{30}
\end{gather*}
$$

To evaluate the constants of integration, we use the boundary conditions (\mathcal{I}_{K} is the total length of the system)

$$
\begin{gathered}
l=l_{\mathrm{ti}}: \quad t_{1}=t_{1,: \mathrm{i}}=h, t_{3}=t_{3, \mathrm{i}}=f \\
\\
l=0: \quad t_{2}=t_{2,0}=g .
\end{gathered}
$$

Then the equations for the temperatures of the flows along the length of the pipe system acquire the form

$$
\begin{gather*}
t_{1}=h+\frac{D A_{1}}{\alpha}\left[\exp \left(\alpha l_{\mathrm{k}}\right)-\exp (\alpha l)\right]+\frac{D B_{1}}{\beta}\left[\exp \left(\beta l_{\mathrm{z}}\right)-\exp (\beta l)\right], \tag{31}\\
t_{2}=g+\frac{A_{1}(D-\alpha)}{\alpha}[1-\exp (\alpha l)]+\frac{B_{1}(D-\beta)}{\beta}[1-\exp (\beta l)], \tag{32}\\
t_{3}=f+\frac{C A_{1}}{\alpha} \frac{D-\alpha}{C-\alpha}\left[\exp \left(\alpha l_{\mathrm{K}}\right)-\exp (\alpha l)\right]+ \tag{33}\\
+\frac{C B_{1}}{\beta} \frac{D-\beta}{C-\beta}\left[\exp \left(\beta l_{\mathrm{k}}\right)-\exp (\beta l)\right] .
\end{gather*}
$$

The next problem is to determine the coefficients A_{1} and B_{1}. Comparing the quantities $y=t_{2}-t_{1}$ and $x=t_{2}-t_{3}$ and making use of Eqs. (31)-(33), (12), (13), and (26), (27), we obtain the system of equations

$$
\begin{align*}
& F X_{1}+G Y_{1}=h-g \tag{34}\\
& F X_{2}+G Y_{2}=f-g \tag{35}
\end{align*}
$$

in which

$$
\begin{gathered}
F=\frac{A_{1}}{\alpha} \exp \left(\alpha l_{\mathrm{k}}\right), \quad G=\frac{B_{1}}{\beta} ; \\
X_{1}=(D-\alpha) \exp \left(-\alpha l_{\mathrm{k}}\right)-D \\
Y_{1}=D-\beta-D \exp \left(\beta l_{\mathrm{k}}\right) \\
X_{2}=(D-\alpha) \exp \left(-\alpha l_{\mathrm{k}}\right)-C \frac{D-\alpha}{C-\alpha} ; \\
Y_{2}=D-\beta-C \frac{D-\beta}{C-\beta} \exp \left(\beta l_{\mathrm{K}}\right)
\end{gathered}
$$

Solving the system (34), (35) for F and G, we find the coefficients A_{1} and B_{1}.
The equations for the temperature distribution along the length for triple countercurrent flow can be written in the final form

$$
\begin{equation*}
t_{1}=h+D F\left\{1-\exp \left[\alpha\left(l-l_{\mathrm{k}}\right)\right]\right\}+D G\left[\exp \left(\beta l_{\mathrm{\kappa}}\right)-\exp (\beta l)\right], \tag{36}
\end{equation*}
$$

TABLE 1. Longitudinal Flow-Temperature Distribution (${ }^{\circ} \mathrm{C}$) for Various Boundary Conditions

| $l_{1} \mathrm{~m}$ | 0 | 20 | 50 | 100 | 500 | 1000 | 1400 | 1450 | 1480 | 1500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The quantity of heat transmitted to the water is determined by means of Eq. (1):

$$
\begin{equation*}
Q_{1}=K_{1} \Omega D_{1} \prod_{0}^{l_{\mathrm{k}}}\left(t_{2}-t_{1}\right) d l \tag{39}
\end{equation*}
$$

The heat acquired by the air is determined from Eq. (2):

$$
\begin{equation*}
Q_{2}=K_{2} \pi D_{2} \int_{0}^{t_{\mathrm{K}}}\left(t_{2}-t_{3}\right) d l . \tag{40}
\end{equation*}
$$

As an illustration, Table 1 gives the results of calculations of the temperature profile according to the relations derived above for several different sets of boundary conditions and certain dimensional, mass-flow, and heat-transfer characteristics: $D_{1}=0.06 \mathrm{~m}$; $D_{2}=0.10 \mathrm{~m} ; G_{1}=4000 \mathrm{~kg} / \mathrm{h} ; \mathrm{G}_{2}=3000 \mathrm{~kg} / \mathrm{h} ; \mathrm{G}_{3}=2800 \mathrm{~kg} / \mathrm{h} ; \mathrm{c}_{1}=1.00 \mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C} ; \mathrm{c}_{2}=0.28$ $\mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C} ; \mathrm{c}_{3}=0.25 \mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C} ; \mathrm{K}_{1}=260 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{~h}^{\circ} \mathrm{C} ; \mathrm{K}_{2}=150 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{~h}^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{K}}=1500 \mathrm{~m}$.

Several conclusions can be drawn from an inspection of the results under the given conditions. In particular:

1) The flow temperatures equalize over fairly short intervals at the ends of the pipes (250 m).
2) The temperature of the air at the entry to the system only comparatively slightly affects the temperature level over the entire length of the pipes, while the influence of the water temperature is more significant.
3) The influence of the initial temperature of the combustion products is felt only in the entry section (250 mm).

The proposed method can be used to derive analytical relations for calculating the temperature fields and other characteristics for other possible combinations of relative motion of the media and the direction of heat transfer between flows.

NOTATION
D_{1} is the median diameter of inner pipe; D_{2}, median diameter of middle pipe; t_{1}, temperature of water; t_{2}, temperature of combustion products; t_{3}, temperature of air; G_{1}, mass flow of water; G_{2}, mass flow of combustion products; G_{3}, mass flow of air; c_{1}, specific heat of water; c_{2}, specific heat of combustion products; c_{3}, specific heat of air; k_{1}, coefficient of heat transfer from combustion products to water; K_{2}, coefficient of heat transfer from combustion products to air; and l_{K}, length of pipe system.

